Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase.
نویسندگان
چکیده
An amperometric microbial biosensor for the direct measurement of organophosphate nerve agents is described. The sensor is based on a carbon paste electrode containing genetically engineered cells expressing organophosphorus hydrolase (OPH) on the cell surface. OPH catalyzes the hydrolysis of organophosphorus pesticides with p-nitrophenyl substituent such as paraoxon, parathion and methyl parathion to p-nitrophenol. The later is detected anodically at the carbon transducer with the oxidation current being proportional to the nerve-agent concentration. The sensor sensitivity was optimized with respect to the buffer pH and loading of cells immobilized using paraoxon as substrate. The best sensitivity was obtained using a sensor constructed with 10 mg of wet cell weight per 100 mg of carbon paste and operating in pH 8.5 buffer. Using these conditions, the biosensor was used to measure as low as 0.2 microM paraoxon and 1 microM methyl parathion with very good sensitivity, excellent selectivity and reproducibility. The microbial biosensor had excellent storage stability, retaining 100% of its original activity when stored at 4 degrees C for up to 45 days.
منابع مشابه
Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents.
We report herein a whole cell-based amperometric biosensor for highly selective, highly sensitive, direct, single-step, rapid, and cost-effective determination of organophosphate pesticides with a p-nitrophenyl substituent. The biosensor was comprised of a p-nitrophenol degrader, Pseudomonas putida JS444, genetically engineered to express organophosphorus hydrolase (OPH) on the cell surface imm...
متن کاملBiosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber-optic microbial biosensor.
A fiber-optic microbial biosensor suitable for direct measurement of organophosphate nerve agents was developed. The unique features of this novel microbial biosensor were the recombinant Escherichia coli cells expressing the enzyme organophosphorus hydrolase on the cell surface and the optical detection of the products of enzyme-catalyzed organophosphate hydrolysis. The use of cells with the m...
متن کاملBiosensor for Direct Determination of Fenitrothion and EPN Using Recombinant Pseudomonas putida JS444 with Surface Expressed Organophosphorus Hydrolase. 1. Modified Clark Oxygen Electrode
This paper reports a first microbial biosensor for rapid and cost-effective determination of organophosphorus pesticides fenitrothion and EPN. The biosensor consisted of recombinant PNP-degrading/oxidizing bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorus hydrolase (OPH) on its cell surface as biological sensing element and a dissolved oxygen electrode as the transduce...
متن کاملBiosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode.
A potentiometric microbial biosensor for the direct measurement of organophosphate (OP) nerve agents was developed by modifying a pH electrode with an immobilized layer of Escherichia coli cells expressing organophosphorus hydrolase (OPH) on the cell surface. OPH catalyzes the hydrolysis of organophosporus pesticides to release protons, the concentration of which is proportional to the amount o...
متن کاملBiosensors for direct determination of organophosphate pesticides.
Direct, selective, rapid and simple determination of organophosphate pesticides has been achieved by integrating organophosphorus hydrolase with electrochemical and opitical transducers. Organophosphorus hydrolase catalyzes the hydrolysis of a wide range of organophosphate compounds, releasing an acid and an alcohol that can be detected directly. This article reviews development, characterizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 16 7-8 شماره
صفحات -
تاریخ انتشار 2001